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1. Introduction

Intelligent or smart materials have been extensively used in mechanical engineering, civil engineering, navigation,
aviation and aerospace for its well adapting to various applied loads and environments. The behavior of such intelligent
structures has therefore gained much attention in the mechanics community [1-4]. Exact solutions similar to Pagano’s
solutions [5,6] have been derived and played an important role in both validating simplified theories and helping
understanding the in-depth physics of smart structures [7-11].

Although the finite element method (FEM) has achieved a great success in practical fields, it is not omnipotent since the
FEM solutions usually do not provide a direct relation between the results and the physical essence of the problems.
Compared to FEM which is now extensively used, the state space method (SSM) [12-15] has several advantages. Firstly, it
should be more accurate from the theoretical point of view due to its continuous basis. Secondly, the scale of the final

* Corresponding author at: Department of Engineering Mechanics, Zhejiang University, Yuquan Campus, Hangzhou 310027, PR China.
Tel.: +8657187951866; fax: +8657187952570.
E-mail address: chenwq@zju.edu.cn (W.Q. Chen).

0022-460X/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsv.2009.05.008


www.sciencedirect.com/science/journal/yjsvi
www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.05.008
mailto:chenwq@zju.edu.cn

822 Y.Y. Zhou et al. / Journal of Sound and Vibration 326 (2009) 821-836

equations in SSM does not increase irrespective of the increasing of layer number for layered media, thus making numerical
calculation very efficient. However, SSM suffers from serious numerical instabilities for long-element and high-frequency
problems when the exponential matrix operation is carried out completely by a computer [16]. Several efficient methods
have been proposed to overcome the difficulty [17-20].

Based on the mechanism of wave propagation, Pao and his associates developed a new method, called the method of
reverberation-ray matrix (MRRM), to analyze dynamic responses of framed structures [21-23] and transient wave
propagation in layered media [24,25]. The formulation bears a strong physical interpretation and can be easily extended to
analyze free vibration of piezoelectric laminates as shown immediately. More interestingly, it is found that the MRRM can
inherently avoid the aforementioned numerical problem, as recently pointed out by Pao et al. [26].

Although MRRM has shown great feasibility for solving practical problems as well as uniformity in formulations and
calculations, its theoretical basis has not been well-established. This paper will provide a mathematically more strict
derivation of MRRM based on theory of first-order linear differential equations. In particular, the case of repeated
eigenvalues, which has not been considered before by Pao et al., is discussed here to complete the formulating of MRRM.
Comparison for simply supported laminates with the conventional SSM is preformed to validate the present MRRM. Finally,
normal modes of some selected frequencies are presented to assess the superiority of the present method.

2. Mathematical basis for MRRM
2.1. Solution of ordinary differential equations

Consider the following general set of first-order ordinary differential equations with constant coefficients:

df(z)
Tdz
where f is the state vector, whose m elements being unknown functions of z, C the constant coefficient matrix of order
m x m and g the prescribed source vector. It should be noted that, any system of ordinary differential equations can be
rewritten into the form shown in Eq. (1).
The solution to Eq. (1) is [27]:

=Cf2)+82 (zp<z=<2z) (1)

V4
f(z>=B<z,zo>f<zO)+/Z Bz 0)g(@)do (2)
40

where B(z,zy) = €€@=20) is the transfer matrix or propagator [28].
The solution can also be expressed as

f(z) = e©
20

Z
A+ / ec‘ﬂg«o)dw] (3)

where A = e~C%f(z;), the elements of which can be seen as undetermined constants.
Note that

eZ —verzy-1 (4)

where A = diag(44,4y,...,4m) is a diagonal matrix with m elements on the main diagonal and V = [V{,V5, ..., V], with V;
being the eigenvector corresponding to the eigenvalue A; of C. The form of Eq. (4) assumes that all eigenvalues of C are
distinct from each other. We will discuss the case of repeated eigenvalues in a latter stage in Section 5.

Using Eq. (4), Eq. (3) can be further modified as

f(z) = VeM

20

rZ
A eA‘Pv-1g<qo)d<o} (5)
where A’ = V™ 1A is another unknown vector.
2.2. Dual coordinate systems and coordinate transform

As a requisite for the MRRM, a pair of dual local coordinates is used for a single layer in a stratified medium or a beam
member in a 2D or 3D frame. In the dual local coordinate systems (see Fig. 1), Z denotes the system pointing from I to J and
vice versa for Z'. In the text hereafter, any physical quantity affixed with superscripts IJ or JI denotes that it is associated
with the coordinate system IJ or JI, respectively. Note that for any point in the I] element, there exists z/ = hY—Z", where
hY = W'is the length (or depth) of the element.

According to Eq. (3), the solutions of Eq. (1) in the dual local coordinate systems z” and Z" are expressed as

gl — o2 (a1 [ o Cogy
@ =TT |+ e gl(p)do (6)
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Fig. 1. Dual coordinate systems for a typical layer or element.

Al
) = @7 {A” + /0 ’ e‘cﬂ‘”g”(w)dw] (7)

These solutions are obtained in the dual coordinate systems and may be referred to as dual solutions of the problem.

For a practical mechanics problem, the unknown vector f and the inhomogeneous vector g usually have definite physical
meanings, following a certain transformation rule in different coordinates. Denote the transformation matrix between f'
and f/ and that between g" and g” at a same point (Z' = h’-Z¥) as T; and T,, respectively, i.e.

tnl — 20y = 1,80 2l (8)
and
g —2) = Tegl @) (9)
Then, using Eq. (1), we can verify the following equalities:
d'= -1 dIT!, Ty =T (10)
and further
B!, Yy =171 — 2 0y1p (11)
or
eCU(ZU—hU) _ Tf_] ecjl(hU,ZU)Tf (12)

Eq. (12) also can be derived directly based on the Magnus expansion [29].
2.3. Dual relation

In the following, we will establish a relation, called the dual relation, by noticing the transformation relations presented
in Section 2.2.

Considering Eqgs. (7)-(9) and (12), one gets

hY U
@) =T 0 - 2y =11 Al /0 e_cﬂwg”(q))dqo}

U

Ul —pyp—1 | aJl ’ - Il
—e T; Al —/ e " PTrgl(h — p)do (13)

h
Jo
By variable substitution, we have

Uy _ o€ -h)p-1
f'Z)y=e Tf

ZU
N [ e -omglp)de
J
Il | o1 i 2 gl
=e e T A+ i€ '8 (p)do (14)
Comparing to Eq. (6), one obtains

-hU
Al = e*CUh”Tf‘lA" - / e=ogl(p)de
JO
Ky
= Ve A vl TAl v /0 e Mol 1gl(p)dg (15)

This equation expresses the dual relation between two groups of unknown constants, which should be suitable for not only
dynamic responses, but also static or buckling problems. In addition, for a mechanics problem, the inhomogeneous term in
the above formulation corresponds to distributive loads, which have not been considered before [21-25].
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Suppose that /Y is the eigenvalue of CY, viz.
Il —o (16)
where V';{ are the corresponding eigenvector. Left-multiplying the two sides of the above equation with Ty gives rise to
TcIVY iVl = &+ 2TV = 0 (17)

which indicates that, if (/IU Vf’ ) are the eigenvalue and eigenvector of the matrix C?, (—)»U , vag ) are the counterparts for .
Hence, for the eigenvector matrix, we have

v = TVl (18)
if the eigenvalues are arranged in the following ways:

AV = diagZ¥ 78, o0

N = diag(Z, 20 .. Ay = diag(—Y, =Y. = (19)
By introducing new unknown coefficients (A")Y = (v/)=1A! and (A’Y! = W')~1A/, Eq. (15) can be simplified to

i
@) =Nyt [T e Mo gl ar (20)

This dual relation will be employed in the following derivation. For the sake of simplicity, we will drop the prime and
simply write A’ as A.

2.4. System matrix

The dual relation derived above should be rewritten to assure the stability in numerical calculation. If the real-part of
cigenvalue 2” of C is negative, the exponent of the matrix e~A”"’ will contain positive real part. Thus, preserving A” and A"
to be solved together will inevitably lead to calculation involving large and small numbers synchronously. This usually
causes serious instability problem in the numerical calculations. To settle the trouble, it is feasible to suppose that C¥ has
mo (mg<m) eigenvalues /; (i = 1,2,...,mg) with positive real-part or of positive pure imaginary and the rest m—mg
eigenvalues /; (j = mg+1,mg+2,...,m) with negative real-part or of negative pure imaginary. Then we have

AY = diag(21, 22, .. mg), AV = diagUng 1. Amg 25+ -+ 2n) (21)

Correspondingly, the constant vector can be partitioned as

Al
J_ -+
Al = {A’J } (22)

Thus, Alfr is associated with the solution that exponentially increases or simply oscillates along the coordinate axis IJ and AV
is with the solution that exponentially decreases or simply oscillates along that coordinate. Owing to Eq. (19), A can be

decomposed similarly as
Al
A= (23)
P

where A is associated with the solution that exponentially decreases or simply oscillates along the coordinate axis JI and
A’i corresponds to that exponentially increases or simply oscillates. By further assuming

N Qf
- [ e ety glgrap =3 (24)
0 Q;
Eq. (20) can be rewritten as
Uyl I
Al —e NN pl QY Al —e AW pl L ) (25)

which can be further rearranged as

Ali . 0 e*AIihU Al i Q—Ilj (26)
AL [eAl g Al —eAln’ql
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The above equation can be written in a more compact form as follows:

al —pla¥ sV (27)

which, according to the previous works on MRRM [26], can be termed as the generalized local phase relation. An obvious
difference may be observed that the phase relation obtained before is homogeneous, while Eq. (27) is inhomogeneous due
to the involvement of inhomogeneous term in Eq. (1). By properly dividing the unknown constants into two groups, large
numbers are avoided in the phase matrix PY, which assures numerical stability in the calculation. Therefore, MRRM is
superior to SSM when dealing with problems with long elements or in the high-frequency range.

With only the phase relation known for every layer, it is still insufficient for the global analysis. Some additional
equations at nodes or boundaries (termed here as the joint coupling relation; in previous works on MRRM [26], it is known
as the scattering relation) should be established. For a mechanics problem, this relation can always be deduced from the
equilibrium and compatibility conditions at the nodes or boundaries (i.e. at the origin of all local coordinates). With
Z!' = ZX = 0, the joint coupling relation contains no exponential functions and hence completely eliminating large numbers.
This clearly indicates that formulating of the joint coupling relation is not crucial to the numerical stability induced by large
numbers. Hence, the coupling relation at joint J can be arranged according to the previous division of unknown constants as

& =5a + @/ (28)

where §/ is termed here the local coupling matrix, Q/ corresponds to external stimuli at the joint. The detailed form for free
vibration problem of piezoelectric laminates will be given in the next section.
Assembling all generalized local phase relations for members and all joint coupling relations at nodes, yields

a= Pd+S1 (29)

d=Sa+s, (30)

where P and S are the global phase and joint coupling matrices, s; and s, are the global source vectors due to stimuli
applied on members and joints, respectively. The elements of the two vectors d and d or a and a are the same, but their
sequences may be different. To account for this difference, we introduce the permutation matrices U; and U, so that

d=U;d, a=U,a (31)
Combining Eqgs. (29) and (31) gives
a=PU;d +s, (32)
Further combining Egs. (30)-(32) yields
d = SU,PU;d + SU;s +5; (33)
or briefly,
I-Rd=s (34)

where R = SU,PU; is termed here as the system matrix and s = SU,s¢ + s, is the global source vector due to all external
stimuli. In elastodynamic problems, the system matrix is called the reverberation-ray matrix, which has a strong physical
interpretation of wave propagation in structures or layered media [21-26]. Note that the expression for the system matrix
here seems to be more general than the reverberation-ray matrix and is suitable for any linear system described by Eq. (1).

When the global source vector vanishes in Eq. (34) and for a nontrivial solution, the determinant of the coefficient
matrix should vanish, i.e.

I-R =0 (35)

This is the characteristic equation of the linear system. For the free vibration of a structure, Eq. (35) corresponds to the
frequency equation, while for the wave propagation in stratified medium, it gives the dispersion relation.

3. State equation of a piezoelectric layer

Now we turn to consider the free vibration of an N-layered cross-ply piezoelectric laminate subjected to cylindrical
bending, as shown in Fig. 2. In this case, the two non-zero displacement components are u and w in x and z directions,
respectively.

The constitutive relations for an orthotropic piezoelectric layer under cylindrical bending are

09

ox =C 6u—i—C 6W+e ¢ oy=¢C au—|—C 6W+€
x =t ox 13 0z 31 9z’ y = 'IZaX 23 oz 32 oz

09

ZTMIBE T3, TG TS TS e T Tk
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Fig. 2. Cross-ply piezoelectric laminate subjected to cylindrical bending.

09

ou 0 ou
Dx=€15§+915§—811§s 13:2(331&+€33§—833a—i5 (36)

where ¢y, e; and ¢g;; are, respectively, the elastic, piezoelectric and dielectric constants, ¢y (t;), D; and ¢ are the normal
(shear) stresses, electric displacements and electric potential, respectively. The equations of motion and conservation of
charge are

dox Ot 0*u Otk 00, 0w 0Dy, OD;
o "oz =P ox Tz Pz ox Tz = (37)

From Egs. (36) and (37), it is easy to obtain the following state equation [3,15]:

d
o[t 02Dz, T, W, OI7 = K[u, 02, Dz, Txz, W, P]7 (38)

where K is an operator matrix that is given in Appendix A, u, ¢,, D,, Tx,, w and ¢ are six state variables. The two so-called
induced variables, o, and Dy, can be expressed in terms of the state variables, see Eq. (A.2) in Appendix A.
In this paper, the laminate is assumed to be simply supported at the two edges (x = 0 and [), which satisfy the following
boundary conditions:
O'x:W:(z):O (X:OOrl) (39)
Compared with that for an elastic plate [30], here the electric potential is also required to be zero at the two edges. For
the boundary conditions in Eq. (39), we assume
hu(¢) cos nmé
—cgls)(fz(C) sin nné

(4

D, ﬂ/cgs)ggB’Dz(g) sinnmé | (40)
= e

Txz cgls)%xz(zj) cos nmé

w hw({) sin nré

¢

h 6(515)/8(313)65(0 sin nré
where { = z/h and ¢ = x/I are the dimensionless coordinates, n the integer (half-wave number), @ the circular frequency

and ‘-‘%15) and 9(313) represent the material constants of the first layer (the bottom layer, see Fig. 2).
Substitution of Eq. (40) into Eq. (38) yields

d .
afO = (41)

where f({) = [U, G2, Dy, Txz, W, q_S]T is the dimensionless state vector and the expression of the coefficient matrix C is given in
Appendix A.

4. Free vibration of piezoelectric laminates

In this section, we shall follow the derivation in Section 2 to establish the formulation of MRRM for the problem
considered in the last section. We assume that the top and bottom surfaces are mechanically tractions-free and electrically
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open-circuited. Then we have the following boundary conditions:

0;,=D,=1x,=0, atz=0,h (42)
In addition, the bonding between two adjacent layers is perfect, so the following compatibility conditions hold:
K(0) = diag(-1,1,-1,1,-1,1) - #10)2T; - #/(0) (at the interface J) (43)
From Eq. (42), one gets
AO1 ANN-1)
V¥ V2.6 [A& =03y, [VNV-DVENDR |:A§J_(Nl)j| = 03,1 (44)
— 16x1 6x1

where [VO'|v0!] and [VNN-DIWNN=D comprise of the second, third and fourth rows of V' and VNN~ respectively.
Eq. (44) can be further written as

v(l]Ao_l — _vg—lAg]’ v[X(N—])AIX(Nfl) _ _VIX(N_])AIX(N_]) (45)
or
p'd' =s'a', pVd" =s"aV (46)

Here, in contrast to the joint coupling equation presented in Section 2, we keep the matrices D' and D" on the left-hand
sides so that matrix inversion is avoided, which can further assure numerical stability in some extreme cases [31].
On the other hand, Eq. (43) implies

VKAK — 1 WA (47)
which is equivalent to
vk — vial (48)
This equation can be rearranged as
Vi v Al Vi, v A
ot i) {e ]
or
Dd =9 (49)

where J = 2,3,...,N — 1. As before, the inversion of matrix D/ in Eq. (49) is not performed.
Combining Eq. (49) with Eq. (46) gives the global joint coupling relation

D' 05,6 - 036 033 A% Al 05,6 - 035 05,3 A
0g.s D* 1 0g. 0Og.3 AL 0.3 A> 1 0G5 Ogs A
06,3 Ogxg - DV1 05| AT Y 0.3 Og.s - AV 0gg AN
03,3 03,6 - 03, DV |[ANND 05,3 03,6 - 03, AV |[A}YD
or
Dd = Sa (50)

In the free vibration problem, Eq. (50) is also referred to as the global scattering relation.
The local phase relation of the problem has the same form as Eq. (26). Hence, by assembling such relations for all layers,
we obtain the global phase relation

Al A%
10 01
Ax Pex6 - 0 Al
(N=DN o ... pN=DN || SN
A} 0o - P AN-D
ANN-1) ANN-1)
+ N

or

a—Pd (51)
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It is seen that there is no need to introduce the permutation matrices and the characteristic equation for the problem is
ID— AP| =0 (52)

As mentioned before, the above formulation of MRRM is valid for the case that all eigenvalues of the coefficient matrix C
are distinct from each other. We will consider the case of repeated eigenvalues that may appear in the computation and has
not been considered before.

5. Case of repeated eigenvalues

When the coefficient matrix C has repeated eigenvalues, the solution to Eq. (41) no longer bears the form of f(z) = e®?A.
For the present problem, we find in the calculation that there may appear two identical zero eigenvalues. Hence, we will
discuss the particular case of two identical eigenvalues in the following and the more complicated cases can be treated in a
similar way.

In the case that there are two repeated eigenvalues, denoted as /', the expression for the displacement i shall take the
following form:

il = Ay €M7 + Ay e*2Z 4 Ag e’3% 4 Age™4? 4 Asze” Z 4 Ag(h — z)e' 2 (53)
where without loss of generality, we assume that /1, and /, represent the exponentially growing terms of the solution and
23, A4 denote the exponentially decreasing ones. Note that for a practical mechanics problem, the numbers of growing and

decreasing terms are always identical.
In the dual local coordinates, we have

al = Allj eh? A’ZJ eh2? A’3] a7 +A£{ ea?! +A’5]z’] et +Ag(h —yet? (54)

- 1 Il 1. 7 Al * ]I JES I
W = Alleh?' f Alle=o?! | Alle=a?! | plle=tad! | pllalle=2"2 o Alp — ATy e (55)

Noting that at the same point, the two expressions shall predict the same result, i.e.

il = — 'Y — 2y (56)
one gets
il 1
Al r e*/llhu 7 All
I - 1
Azj _e—/2h! A’z
i 1
A3 —e—/ah! A’3 (57)
AZ _e—/ah” Ag
Ry
—J*h
i —e 1
Ayt 14

which is the dual relation between the unknown constants in the dual local coordinate systems for this
peculiar case. To avoid numerical instability, the dual relation can be rearranged to obtain the following local phase
relation:

U Ul
Allj I _e—Mh! T A13]
A _e—Jah? A
A e | | AY
= 58
A _e3hY Al (58)
1 _eah¥ I
Ay e A
I —e I
Al 4

As mentioned earlier, only A" =0 has I})een encountered in our numerical calculations. Thus there is no numerical
instability associated with the term e* " in Eq. (58).
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In accordance with the expression for i, the one for the state vector can be expressed as

e/12
Y11 - V16 ehz
Y21 - V26 el3z
f= oz A
'z
Y61 ot V66 z¢e .
(h—z)e'?

829

(59)

where A = [A; Ay A3 A4 As Ag]" for the If coordinates, while A = [A; A, A3 A4 Ag As 1T for the JI coordinates and y; are
constants. Obviously, we have y;; =1 (i = 1,2,...,6), while the others can be determined from Eqgs. (41) and (58).

At the interface, we have z = 0, hence

Y11 Y14 0 hyge
Y21 - Y2a 0 hyyg _
f(0) = . . . . A£VA (60)

Y61 - Vea 0 hyes
which shall be used in the derivation of scattering relations, omitted here for brevity.
Table 1
Material properties of piezoelectric materials.
Material c11 (GPa) c33 (GPa) 13 (GPa) Cs5 (GPa) e15 (c/m?) e31 (c/m?) e33 (c/m?) £33/20
PZT-4 139 115 743 25.6 12.7 —5.2 151 1300
PVDF 238.24 10.64 219 4.4 —0.135 —-0.13 —0.276 11.98
Note: &y = 8.854185 x 10~ '2 (F/m).
Table 2
Lowest frequency parameters () of a four-ply laminate ([Z/V/Z/V], s = 0.1).
Mode n SSM RMM Mode n SSM RMM Mode n SSM RMM
1 0.0404357 0.04043570 31 4.36837171 4.36837172 51 5.696719 5.69666000
2 0.13627286 0.13627286 32 4.43546978 443546978 52 5.76689382 5.76691554
B 0.2560421 0.25604210 33 4.5014792 4.50147921 53 5.83762466 5.8376345
4 0.38847343 0.38847343 34 4.56674669 4.56674668 54 5.90881877 5.90880906
5 0.53130601 0.53130601 35 4.63154735 4.63154735 55 5.98051888 5.98043059
6 0.68431323 0.68431323 36 4.69609932 4.69609933 56 - 6.05248985
7 0.84744268 0.84744268 37 4.76057518 4.76057521 57 - 6.12497720
8 1.02042808 1.02042808 38 4.8251112 4.82511124 58 - 6.19788268
) 1.20271094 1.20271094 39 4.88981456 4.88981462 59 - 6.27119616
10 1.39341523 1.39341523 40 4.95476891 4.95476922 60 - 6.34490740
Note: ‘-’ indicates result not available or presented.
Table 3
Lowest frequency parameters (€2) of a three-ply hybrid laminate ([Z/E/V], s = 0.15).
Mode n SSM RMM Mode n SSM RMM Mode n SSM RMM
1 0.08300497 0.08300497 31 446849245 4.46849105 41 5.72699999 5.73036129
2 0.28550561 0.28550561 32 4.59228664 4.5922838 42 5.849 5.85886169
3 0.55599967 0.55599967 33 4.71671814 4.71671717 43 5.95599998 5.98767794
4 0.86773161 0.86773161 34 4.84175084 4.84174379 44 - 6.11679048
5 1.19275263 1.19275263 35 4.96732059 4.96730078 45 - 6.2461813
6 1.49363742 1.49363742 36 5.09342409 5.09340835 46 - 6.37583376
7 1.73480639 1.73480639 37 5.22026563 5.21997127 47 - 6.50573247
8 1.91018096 1.91018096 38 5.346 5.34697668 48 - 6.63586318
9 2.04133352 2.04133352 39 5.47349988 5.4743947 49 - 6.7662127
10 2.15018215 2.15018215 40 5.60153993 5.60219794 50 - 6.89676875

Note: ‘E’ represents an elastic layer which has the same elastic constants and mass density as PZT.
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6. Numerical examples

In the numerical examples, we assume that the piezoelectric laminates are made of PZT-4 and PVDF, whose material
constants [32] are listed in Table 1.

For all examples, except the second example (Table 3), each ply involved in the N-ply laminate is assumed to have the
same thickness, i.e. h/N. The orientation angle between the x-axis and material principal axis is denoted as 0, with the
assumption that 0 = 0° for the PZT-4 layer and 0 = 90° for the PVDF layer. The transformation of material constants
between different Cartesian coordinates can be found in Appendix A of Ref. [33]. Similar to the work by Heyliger and
Saravanos [34], the densities of PZT-4 and PVDF herein are assumed the same. In the following, the mechanical boundary
conditions at x =0 and x = [ are always simply supported and electrically close-circuited, while at the top and bottom
surfaces are assumed to be tractions-free and electrically open-circuited.

The MRRM and SSM results for a four-ply laminate (Z/V/Z|V, Z: PZT-4 and V: PVDF) with the thickness-to-span ratio
s = h/l = 0.1 are given in Table 2. It can be seen that, when n is less than 10, the dimensionless frequencies obtained by the
SSM agree well with MRRM's results; when n is between 31 and 50, the frequencies by SSM deviate to some degree from
those by the MRRM; while n is larger than 56, the SSM encounters serious numerical instability and no results can be
obtained. In contrast to SSM, the present method overcomes this trouble perfectly and hence can be an appropriate choice
for the high-frequency analysis. The second example considers the free vibration of a hybrid laminate with a layup [Z/E/V],
here E denotes an elastic ply with the same elastic properties and mass density as PZT. The thicknesses of three plies are
non-equal and taken as h'? = h®** = 10h?3. The results are given in Table 3 for s = h/l = 0.15. Similar to Table 2, we can see

(a)

|

[ —fe— Sp—— S——— E— —_—l e —

Fig. 3. Normalized mode of the laminate [Z/V/Z/V] for s = 0.1, n = 1: (a) Q = 0.04043570 and (b) Q = 2.34786915.

Fig. 4. Normalized mode of the laminate [Z/V/Z/V] for s = 0.1, n = 2: (a) Q = 0.13627286 and (b) Q = 2.44862178.
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Fig. 6. Distribution of w along the thickness of the laminate [Z/V/Z|V] for s = 0.1, n = 1 at Q = 2.34786915.

that when n is larger than 43, the SSM suffers from a serious numerical problem and cannot predict the proper frequency,
while the MRRM still works very well.

It is pointed out that, in the first example of the [Z/V/Z/V] laminate, when Q = 0.30163789 for n=1, as well as
Q = 1.46408835 for n = 2, etc,, the case of repeated eigenvalues considered in Section 5 is encountered during the search of
characteristic roots of system equation, which will give spurious solution if using the formulation for distinct eigenvalues only.
Thus, it is very important to consider the case of repeated eigenvalues in the formulation of MRRM, as described in Section 5.

The following discussions are confined to four-ply piezoelectric laminates with different layups. The normalized modes
of the [Z/V/Z|V] laminate shown in Figs. 3-5 clearly indicate the dominating deformation for a particular vibrating
frequency. Figs. 3a and b show the flexure dominated mode and thickness-stretch dominated mode for n = 1, respectively,
while those for n = 2 and 3 are given in Figs. 4a and b and 5a and b, respectively. For simplicity, we will drop the word
‘dominated’ assuming that no confusion will be caused. The thickness distribution of transverse displacement w for the
thickness-stretch mode in Fig. 3b is shown in Fig. 6. As can be seen, w gains its maximum at the top or bottom surface,
while a zero value point is near the middle surface. This is a typical characteristic of the fundamental thickness-stretch
mode of a plate structure [35]. Since an asymmetric laminated structure is considered here, the fundamental thickness-
stretch mode is just nearly symmetric (not strictly) with respect to the middle surface. At Q = 5.29024761 and 7.29328146,
we have the second and third thickness-stretch modes as shown in Figs. 7 and 8, respectively. For the second thickness
stretch mode, the transverse displacement has three maxima along the thickness and is nearly antisymmetrically
distributed, as clearly seen from Fig. 7b. The third thickness-stretch mode is again nearly symmetric with respect to the
middle surface and the vertical displacement has four maxima along the thickness.
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Fig. 7. The second thickness stretch mode (2 = 5.29024761) of the laminate [Z/V/Z|V] for s =0.1,n = 1.
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Fig. 8. The third thickness stretch mode (2 = 7.29328146 ) of the laminate [Z/V/Z|V] for s=0.1,n= 1.

Figs. 9 and 10 show that surface wave modes usually dominate at high frequencies, which agrees with the well-known
phenomenon of wave channeling in acoustics [36]. When the stacking sequence of layers changes, the channeling of
vibration may occur at the lower surface or the interface of the laminate, as shown in Figs. 11 and 12 for the [V/Z/V/Z] and
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Fig. 9. Normalized mode of the laminate [Z/V/Z|V] for s = 0.1, n = 10: (a) Q = 1.39341523, (b) 2 = 3.46607641 and (c) Q = 4.42437516.
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Fig. 10. Normalized mode of the laminate [Z/V/Z|V] for s = 0.1: (a) n = 20, Q = 3.32573222, (b) n = 30, 2 = 4.29974889 and (c) n = 40, Q = 4.95476922.
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Fig. 11. Channeling of vibration at the lower surface of the laminate [V/Z/V/Z] for n = 10, s = 0.1 at Q = 11.96021219.
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Fig. 12. Channeling of vibration at the intermediate interface of the laminate [Z/V/V/Z] for n = 10, s = 0.1 at Q = 6.32333149.

[Z/V|V|Z] laminates, respectively. In these cases, the energy is localized to the surface or interface and this property may be
useful in nondestructive detection and evaluation of laminated composites.

7. Conclusion

This paper presents a theoretically solid basis for the method of reverberation-ray matrix using the theory of differential
equations. The dual relation is derived based on the concept of coordinate transformation, while the joint coupling relation
is derived from the compatibility and equilibrium conditions at the node or the interface/surface. Note that these results
are obtained for a general linear differential equation system with constant coefficients as well as inhomogeneous terms.

Free vibration of cross-ply piezoelectric laminates in cylindrical bending is studied by employing the present modified
MRRM. The coupling effect between elastic and electric fields is taken into consideration. Such factor seems to complicate the
analysis, but based on the simple idea of MRRM, the derivation is still straightforward. In addition, numerical instabilities
frequently encountered in the conventional SSM are removed by the present MRRM. The case of repeated eigenvalues is
considered and the associated formulations are given. Numerical comparison with the SSM solution for simply supported
laminate indicates that the MRRM is accurate and also efficient enough to deal with high frequency and long element problem.
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Appendix A

(1) Matrix operator K
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(2) Induced variables o, and Dy
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